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Abstract

Deep learning is thriving, and neural networks are currently being developed for all kinds of
computational problems. Recently it has been shown that a convolutional neural network
performs very well on diagnosing Alzheimer’s Disease (AD) patients based on their MRI
scan [1]. However, the focus is often placed on computational time and performance when
developing such a network. Little attention is often paid to the subjects’ demographics and
whether the training data is representative and balanced according to the demographics
[2].
This project investigates whether a bias in ethnicity in the publicly available dataset
ADNI will propagate as a bias in a model for a convolutional network.
A state-of-the-art convolutional neural network used to diagnose AD [1] is explored.
The network is described and implemented in Python. Furthermore, a simpler network
with comparable performance and a similar structure is presented. They were trained
on different splits of preprocessed magnetic resonance (MRI) images from the American
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [3] dataset. They yielded around
80-85 % accuracy and sensitivities above 65 % depending on the split and model. Using
the models to predict AD on a test set from the Australian Imaging, Biomarker Lifestyle
Flagship Study of Ageing (AIBL) [4] yielded a performance comparable to the AD
prediction on the ADNI images. However, when classifying images from the Italian
Alzheimer’s Disease Neuroimaging Initiative dataset (I-ADNI) [5], all the models showed
a worrying drop in performance. The best model could only achieve 78.0 % accuracy and
sensitivity (almost no CN patients were present in the Italian dataset). In the worst case,
the model only had the ability to classify the Italian patients randomly. Subsequently, it
was found that the models in almost all cases have higher performance on MRI images
taken at field strength 1.5T images varying up to over 10 % and that there were no
significant differences in performance for the genders.
This project was challenged by the low amount of data from AIBL and I-ADNI and
that the sites were very imbalanced concerning healthy controls (CN) and AD patients.
Furthermore, it can be hard to ensure that no hidden bias in the different sites unexpectedly
affects the results.
Conclusively the results suggest that the ethnic bias in the training dataset did propagate
as a bias in the convolutional neural networks leading to a concerning drop in performance.
More data should be included to investigate this further; however, this can have crucial
consequences for how the ADNI data should be applied to deep learning in the future.
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Glossary

AD Alzheimer’s Disease.

ADNI Alzheimer’s Disease Neuroimaging Initiative.

AI Artificial Intelligence.

AIBL The Australian ADNI dataset.

CN Cognitive Normal.

DARTEL A Fast Diffeomorphic Registration Algorithm. Used for normalizing MRI scans..

DTU Danish Tecnical University.

HPC High-Performance Computing - the name of the cluster used in this project.

I-ADNI The Italian ADNI dataset.

LSF Load Sharing Facility - the cluster used in this project.

MCI Mild Cognitive Impairment.

MNI Montreal Neurological Institute.

MRI Magnetic Resonance Imaging.

Six-layer model In this project, two neural networks are described, and this is the simple
model that is used if not stated otherwise.

SPM Statistical Parametric Mapping.

t-SNE t-Distributed Stochastic Neighbor Embedding.

Thinlinc Server to store the code and data for this project..
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1 Introduction

Systems using artificial intelligence (AI) and deep learning are becoming more and more popular
for analyzing medical images. They are used so widely that their results may affect the overall
ability to diagnose and treat different diseases. Therefore, many scientists are working hard
to develop and improve these AI systems to get better performance. Much work is put into
improving the AI algorithms, and little attention is often paid to the data used to train the
AI . This creates a very high risk that the data-set contains an imbalance, which can cause
unforeseen problems. This imbalance can occur for many reasons - some diseases might be more
often found in one gender or be more frequent in specific parts of the world. The imbalance
could also be due to some countries having better resources for healthcare. Since this bias can
be based on ethnicity, geography, gender, or another demographic factor, this might result in
specific groups of people getting a lower standard of healthcare due to the lack of training data.
The motivation for this project is to investigate this hypothesis and raise awareness of the
consequences of working with a biased dataset.
The data-set investigated is the publicly available ADNI [3] dataset, which is one of the most
frequently used datasets in neuroimaging research and development. This dataset contains
magnetic resonance (MRI) images of brains. It divides them into three target categories - either
as having Alzheimer’s Disease, having a mild cognitive impairment, or no cognitive impairment.
A much investigated AI task, which will be the starting point for this project, is to diagnose
the patients. This project focuses on the categorization of AD vs. CN patients using their
structural MRI scans. Using a neural network trained on the American ADNI dataset, the
performance will be evaluated using the American [3], Australian [4] and Italian [5] datasets
for testing. Then it will be explored whether their performances are comparable.
In conclusion, it is stated that this project aims to reconstruct the neural network described in
the paper by Basaia et al. [1] and train it on the American ADNI data-set. Then the trained
network should be tested on ADNI data-sets from different parts of the world to see if there is
a difference in performance.
The hypothesis is that a bias in the ADNI dataset, will propagate as a bias in the computer-aided
diagnosis algorithms trained on the data. The bias will occur due to different circumstances
worldwide, such as differences in access to health care, genetic differences, and contrasting
lifestyles.
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2 Background

2.1 Alzheimer’s disease

Alzheimer’s disease is an illness that results in ever-diminishing brain function and is the most
common cause of dementia. The symptoms are failing memory, disorientation, mood and
personality changes, and low ability to do everyday tasks. The disease progresses very slowly
and comes insidiously. In the beginning, it can be hard to tell if there is even cause for concern,
and many other diseases exist with similar symptoms [6].
Changes in the brain structure are some of the main features of Alzheimer’s disease. However,
little is actually know about what causes these changes. It is believed that a build-up of the
protein Amyloid-beta, which is quite toxic to synapses, and another protein tau that tangles
bundles of nerve fibers, is a major cause of these changes. This process begins up to 15-20 years
before symptoms appear. Connections between the neurons are lost, and other complex brain
changes occur, such as damage in the hippocampus, memory, and brain tissue shrinkage [6].
Worldwide 55 million people suffer from this disease, and only 1 out of 4 people with the
disease get a diagnosis. Alzheimer’s and dementia is the most common cause of disabilities for
older people, [7] and every year 700.000 people die from this disease. Furthermore, 277 billion
dollars was spent on this disease in 2018 in the U.S. Alzheimer’s disease is the 6th leading
cause of death in the U.S. and is the only disease of the 10 leading causes that cannot be cured
or slowed down in any way [8].

Diagnosis of Alzheimer’s

An MRI scan is one of many features used for diagnosing AD, and it is acquired together with
a comprehensive clinical exam and blood and urine tests. The clinical examination focuses
on previous medical history, the patient’s ability to do everyday tasks, and recent changes in
behavior. Furthermore, neuropsychological tests are conducted to investigate the patient’s
memory, attention, and ability to solve small problems.
Therefore it is entirely possible that a brain scan which highly suggests that the patients have
AD will still be correctly classified as healthy by doctors if there are no clinical symptoms [9].

Diagnosing Alzheimers from an MRI

Even though it is impossible to diagnose Alzheimer’s based solely on an MRI scan, it can be a
very power full indicator, which is why it is possible for a neural network to detect the disease

Page 2 of 64
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Figure 1: Two preprocessed MRI images viewed in SPM12 showing a Male AD patient aged 73 on
the left and a healthy female patient aged 76 on the right. Differences in the amount of grey matter
(brighter pixels) is clearly observed in the entorhinal cortex and hippocampus placed in the middle of
the lower region of the brain. Note the red circles.

with very high accuracy. To investigate what kind of changes in the brain the network might
pick up as features, two subjects are compared - one is labeled as healthy, and one is labeled
as having AD . In general, both AD and normal aging have similar effects on the brain. The
size of the ventricles increases, and the amount of grey matter decreases. However, with AD
the grey matter is reduced in special regions such as the entorhinal cortex, medial temporal
structure, and the hippocampus [10]. For visualization of this, see figure 1.
It is the changes in the brain structure that are in focus for this project. Using a convolutional
neural network, it will be possible to diagnose the patients using 3D-MRI scans of their brains,
and both now and in the future, this will be a tool for making a correct diagnosis. Therefore it
is of uttermost importance that the network does not inherit a bias from the data set.

2.2 Differences in lifestyles for each country

Backing up the hypothesis that people from some countries might have a higher risk of getting
Alzheimer’s than others and thereby would contribute with more data, some of the risk factors
of AD are investigated: smoking, diabetes, depression, obesity, and education [11] [12]. This
is done by exploring the statistics of these risk factors for each country investigated in this
project, which can be explored in table 1.
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Country BMI Annual cigarette consumption Diabetes (% of population) Depression (% of population) Education Index Life expectancy
North America 28.5 1016.6 10.8 % 5.9 % 0.900 78.9
Australia 27.2 917.0 5.0 % 5.9 % 0.924 83.0
Italy 26 1493.3 5.6 % 5.1 % 0.793 83.3

Table 1: Statistics on risk factors for Alzheimer’s disease from 2019 [13]
.

Figure 2: Overwiew of pipelines to make an AI , and where a potential bias might occur.

To summarize, obesity and diabetes rates are highest in the United States, which also have the
lowest life expectancy. Australia has the lowest smoking rate and the highest education index.
However, smoking rates are highest in Italy, which also has the lowest education index and
lowest rate of depression.
Conclusively this table backs up the assumption that there is a large difference in lifestyles
between the counties, affecting their risks of getting Alzheimer’s disease.

2.3 Bias and Fairness in AI systems

Before this project is begun, it is important to define exactly what bias and fairness in AI
systems refer to. This section is inspired by the definitions mentioned in [14].
First of all, an AI is concluded as fair if the performance is independent of given sensitive
information about the subjects such as gender, ethnicity, or disability. The concept of bias goes
hand in hand with this - the bias represents where the potential unfairness might originate
from. There are roughly 5 levels of the pipeline to make an AI , which are overviewed in figure
2. A bias could be induced in all of them.
Firstly there is the bias in the world: the bias in the society will often show in the collected
data. This bias is not something one can remedy, but it is crucial to be aware of. Next, there
is the potential bias in the data acquired to train AI systems. A representation bias occurs
from the way data is sampled - some feature classes might be unintentionally overrepresented.
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The effect of the representation bias is the entire basis of this project.
Apart from the representation bias, there can be a historical bias based on historically disad-
vantaged groups, i.e., women and black people. Lastly, measurement bias can occur when there
is a bias in how the subjects for the AI ’s are chosen. Easily available data sets are not often
representative of the real world, and data quality can vary across groups.
Bias can also occur in the model. Aggregation bias happens when subjects from distinct groups
have some factors in common that one might be unaware of, and this factor is relevant to
the given problem. This could, for example, be a predictor for an illness where an important
feature is your height. The average height of a person is very different across the world. Using
a single model for this would inherit this bias causing the model to overestimate some groups
and underestimate others.
Evaluation bias occurs when the evaluation method for the model is not representative of the
way the model should be used or the training data.
Lastly, there is the human bias occurring when evaluating predictions and taking action.
Humans might disregard some correct predictions based on poor experience with that particular
group of data.
All these biases might be represented intentionally (the representation bias) or unintentionally
(all others) in this project. This will be elaborated on in the discussion.

2.4 Basics for magnetic resonance imaging

Nuclear magnetic resonance has been used in chemistry and physics for decades to study
molecular structures. It was discovered in 1952 by Felix Bloch and Edward Purcell. Lauterbur
and Mansfield developed magnetic resonance imaging (MRI) in 1973. MRI is one of the most
important imaging techniques in medicine, relying on the properties of the spins of nuclei in
the presence of an external magnetic field. It has excellent soft-tissue contrast and is often
used for examining many parts of the body such as joints, organs, or the brain [15].

Magnetic field strength

During this project, it will be essential if the images in question for a given explanation are
MR images acquired at magnetic field strength 3T or 1.5T. This refers to the magnetic field
strength of an MRI image measured in a unit called Tesla, which is what the ’T’ stands for.
The higher the magnetic field strength, the higher is the signal-to-noise ratio, indicating that
higher field strength means that the MRI is less noisy and of better quality.

Page 5 of 64



Camilla Kergel Pedersen
Department of Computer Science

University of Copenhagen

MNI space

MNI stands for Montreal Neurological Institute, referring to the place where the MNI standard
brain was determined. It was created by using many MRI scans from normal control patients
and is a method for normalizing an MRI scan.
Before MNI, the Talairach atlas was used for normalization [16]. Talairach is a 3-dimensional
coordinate system used to map different placements of structures in the brain independently of
the individual differences between the shape and size using Brodmann areas.
Brodmann et al. [17] split the brainstem into different areas in 1900 based on the cells’
size, shape, and density. It was later shown that these areas actually differ a lot from their
surroundings in function. Thus they are still used. There are 52 areas in total.
Some issues have occurred with Talairach. The Brodmann areas are placed in a rather
approximate way. The authors simply looked at some pictures of the Brodmann map and
estimated where to place it in the Talairach atlas.
MNI wanted to create a brain more representative of the population, and they did so by using
actual real MRI images. By a two-step procedure, they matched the template from Talairach
- first, they took 241 scans and manually defined the landmarks that are also present in the
Talairach coordinate system. They scaled each brain to match the coordinate system’s positions
and then took 305 more MRI images. Then they used an algorithm to match the brains to the
241 that were already matched to the Talairach atlas and had an average of 305 brain scans
[16]. Thus they had created MNI 305, which is the space used for this project to normalize the
images in the preprocessing.

2.5 Neural networks

When constructing a neural network, the main idea is to use the functions of a biological
human brain and recreate the concept mathematically. The human brain consists of a lot of
neurons that are connected by synapses. The neurons each represent different features, and the
synapses represent the strength of the connections between the different neurons.
This knowledge is used when it is tried to model the human brain with a computer system.
The neurons and the synapses are modeled, and it is attempted to teach the model how to
adjust these connections while learning. The input to a neuron is most often described by a
vector representing the input values. Since the neuron is described as a function, it uses the
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input x a vector of weights w and a bias b to calculate an output value by the formula:

w · x+ b

Related to the previously described similarities to the human brain, it can be said that w
describes the synapses and their strength, x defines the output of the other neurons and b

adjusts the sensitivity for when the neurons should fire.
Usually, a neural network consists of layers of neurons that are connected. The input is then sent
through these layers during training, and the neurons and connections are adjusted accordingly
through backpropagation. One frequent layer is a fully connected layer, consisting of a set of
neurons all connected to the neurons in the next layer. Because of the many connections, they
can be computationally expensive, especially for large datasets. When parsing input through a
fully connected layer, the output is equal to: output = activation(dot(x,w) + b like described
earlier. There are many different activation functions, but the one used for this project is the
ReLU activation function:

ReLU = max(x, 0)

For the output layer the sigmoid/logistic function is used:

f (x) =
1

1 + e−x

since this squeezes the output value down to between 0 and 1, representing the probability
that the subject belongs to a class. If this output is above 0.5, the subject belongs to the class,
otherwise not. A project was created earlier in my education explaining all of the basics of a
neural network in a lot more detail [18].
There are lots of different kinds of neural networks depending on the type of the problem. For
this project, where the type of data is images, a convolutional neural network is implemented.

Convolution

Doing convolution over an image is the central part of why a CNN works. The goal is that
the network can learn how nearby pixels are correlated rather than treating each connection
between pixels in the same way as it would for a fully connected network. For an ordinary
2D image, this means to run a filter (N ×N) matrix over the pixels of the image to make a
"mathematical summary" of the most important pixels. Each value in the filter determines the
weight of the corresponding pixel in the output image.
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For example, the horizontal Sobel filter, used to detect horizontal edges is studied:−1 −2 −10 0 0

1 2 1


A horizontal edge in an image will be visible in the pixels by having a large difference between
two consecutive horizontal rows of pixels, indicating a significant change in the colors. A
straightforward piece of a grey-scale example image is studied:0.2 0.2 0.2

0.3 0.3 0.3

0.4 0.4 0.4


Running the Sobel filter over this will give −1 · 0.2 + (−2) · 0.2 + (−1) · 0.2 + 3(0 · 0.3) + 1 ·

0.4 + 2 · 0.4 + 1 · 0.4 = 1 indicating a very high probability of an edge in these pixels. For a
different example, it could be a high probability of an eye, a dog, or a face. For this example,
the output will just be a value, but the output will usually be a smaller image in practice.
Usually, the image will be much larger than the filter, so the filter is run over the image
horizontally and vertically and get another image out. See figure 3. Doing this repeatedly
through several convolutional layers followed by fully connected layers in a CNN will eventually
result in a single or very few values indicating what category an image belongs to.

For this project, 3D convolution is applied, which is a very similar concept. The only
difference is that instead of using 2D matrices as images and filters, they are 3D and moving
along all 3 axes in the images.
In a CNN, the values in the filter are not defined like in the previous examples. It is learned
during the training process, and therefore the expectation is that the filters become specially
designed for the given problem. Often, the first convolutional layer in a CNN will detect the
main features - this could be the contours of the brain. The next layer will then maybe detect
the different structures in the brain, and the next layer will detect abnormalities inside these
structures and so on - exactly like human brains learn to identify objects.

Channels

Another aspect of doing convolutions is the term channels. Like the word insinuates, this
means that each pixel can contain different kinds of information. For example, there will be
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Figure 3: Figure showing an example of a convolution step-wise (Assuming there is no zero padding
and stride=1). Running the filter over the image row-wise and column-wise, where each color in the
output corresponds to the pixels marked by that color in the image.
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three channels for each pixel in an RGB image - the amount of blue, green, and red color,
respectively. When processing an image through a CNN, the number of output channels for
each layer can be chosen, and the intention is that different channels might store different parts
of the information from the convolution.

Loss function

Basically, the goal during training for the network is to minimize the loss function, which
describes mathematically how good the model’s performance is at a given time (epoch).
Calculating the optimal weights is impossible as there are too many unknown parameters.
Instead, an optimization problem is created searching for the weights that minimize the loss.
The problem in this project is a binary classification problem. So the loss function used is the
binary cross-entropy. This is the formula for multiclass cross-entropy:

CE = −
C∑
i

ti log (si)

where ti and si are the ground truth and the prediction stating the probability that the subject
belongs to class i. The idea behind taking the logarithm is that a large difference between ti
and si will yield a large penalty and vice versa.
Because our problem is binary - either a patient is healthy or has AD - C = 2 and it can be
rewritten as:

CE = −
2∑
i

ti log (si) = −t1 log (s1)− t2 log (s2) = −t1 log (s1)− (1− t1) log(1− (s1))

Since it is known that the probability of a person is healthy must be 1− p, where p is the
probability that the patient is sick.

Optimizer

The optimizer should adapt the weights such that the loss is minimized. There are several
methods to do this. The simplest and most well-known one is gradient descent. That simply
works by taking the first-order derivative of the loss function and taking a step in the direction
of that derivative. The step size depends on the learning rate.
The problem with gradient descend is that the learning rate is not adapted, and it can get
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stuck in a local minimum. Also, it can easily begin to oscillate if the learning rate is not set
appropriately. Furthermore, it is prolonged on large datasets. This is because of the need to
take the derivative of the loss function with respect to each data point, and each data point
might also have several features. This will take an enormous amount of computations.
Therefore one would mostly use a development of gradient descend called stochastic gradient
descend. The idea behind SGD is to induce some randomness into the model, so all the data
points are not used for the calculation each time a step is taken. SGD randomly chooses a
point for each iteration and only uses that to determine the direction of a step. However, the
downfall here is that SGD is very sensitive to outliers since one odd data sample will have a
tremendous impact on the direction of the gradient.
Instead of just sampling one data point, one can consider sampling a few data points called
minibatch gradient descent, combining SGD and GD, trying to achieve the best from both
worlds.
The oscillation of SGD can make it hard to reach convergence. So a method called momentum
is introduced to reduce oscillations and help the acceleration of SGD in the relevant direction.
The idea is to add a fraction γ to the update vector of the past timestep to the current update
vector, so more than just the last update step can be taken into account:

vt = γvt−1 + η∇θJ(θ)

A huge problem with all the previously mentioned methods is that the learning rate is fixed
during the training. In general, having a small fixed learning rate will make computation very
slow as one will have to take many steps, and having a learning rate that is too high could
cause one to jump over the minima. Also, the non-convex nature of a neural network can lead
the perfect learning rate in one direction to be too small or too large in another direction.
The ideal situation is to have an adaptive learning rate that is large when one is far from the
minima and gradually smaller as one approaches the minima. This is what ADAM [19] tries
to achieve by using extensions of SGD.
The first one is AdaGrad which introduces the adaptive learning rate by incorporating knowledge
of previously observed data. Larger learning rates are used for parameters with features that
are infrequent and lower learning rates for frequent ones such that each parameter has its own
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learning rate.

wt = wt−1 − η′t
∂L

∂wt−1

where η′t =
η√
αt + ε

and αt =
t∑
i=1

(
∂L

∂wt−1

)2

A weakness here is that the learning rate for each parameter is always decreasing since every
term in αt will always be positive. This can lead to a point where the model simply stops
learning even before the minimum is reached. A further improvement with AdaDelta is that
instead of just adding past squared gradients, the window of accumulated past gradients is
restricted to a fixed size. The sum of gradients is defined as a decaying average of all past
squared gradients instead of just previously stored gradients. So the running average at one
timestep depends only on the previous average and the current gradient.
The last thing needed is to calculate the momentum changes by making the momentum,
from SGD with momentum, adaptive, which ADAM does as it stands for Adaptive Moment
Estimation. So now both the learning rate and the value of the momentum are based on
the given parameter and previous observations meaning that the ideal conditions for faster
convergence and a good tuning of hyper-parameters is present which is ideal when implementing
a neural network, where there are so many options for a design.

2.6 Evaluation metrics

For evaluating the performance of the network, three evaluation metrics were used: Accuracy,
sensitivity, and specificity. They are defined as follows:

Acc =
TP + TN

TP + TN + FP + FN

Se =
TP

TP + FN

Sp =
TN

TN + FP

where T and F are true and false, and P and N are positives and negatives. In practice, the
accuracy evaluates the overall performance. The sensitivity measures the ability to identify if
a subject belongs to a class, and specificity is the ability to measure if the subject does not
belong to the class. Putting this in perspective, it means that a model classifying everyone
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Figure 4: Figure showing the principle of cross-validation. Each horizontal line represents the data
set for one round, and the colors mark how it is split into training and validation set.

as having AD would have a very high sensitivity and a very low specificity. Specificity and
sensitivity are essential when the test set is imbalanced, because this can bias the accuracy if
the model is biased towards one class.

2.7 Cross-validation

To evaluate the final model for this project, cross-validation was used [20]. Cross-validation is
a way to validate the robustness of a machine learning model and how it will react to new data.
The idea is to do a K-fold split of the training and validation data (The test data is kept out of
it). Each split consists of normally 15-20% of the data for validation and the rest for training.
Then the model is trained k times and evaluated on the validation part of the split, see figure
4, and average performance is found. This is done to ensure the stability and robustness of the
model since this is a way to prove that the performance of the model is not dependent on the
choice of training and validation data.

2.8 Data augmentation

Data augmentation is a way to create more data for training. It works by editing the images
already present in the data-set in a small way that changes the distributions of the pixels while
still maintaining the motive such that it resembles the data the model could be exposed to in
the future. This can, for example, be done by small rotations or cropping. For this project it
was important that the images still resembled a brain even after the editing.
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2.9 T-SNE

t-Distributed Stochastic Neighbor Embedding (T-SNE) is an unsupervised non-linear algorithm
used for visualizing high dimensional data in a low dimensional space. It is used to get an
intuition of how the data is arranged. It was developed by Laurens van der Maatens and
Geoffrey Hinton in 2008. It is different from another well-known visualization method, PCA
[21]. While PCA likes to maximize variance and preserve large pairwise distances, T-SNE only
keeps the small pairwise distances. In practice, this means T-SNE will tend to cluster data that
have local similarities, whereas PCA will prioritize to separate dissimilar data. With T-SNE,
it will be easier to spot the local variances between the images, which is the desire for this
project.
T-SNE calculates the similarity between two points in both the high-dimensional and low
dimensional space and then uses 3 steps to optimize the two similarities using a cost-function.

• First the similarities in the high dimensional space are measured. Each data point
becomes a center of a gaussian distribution and only similarities to other datapoints
within this distribution are calculated. For each point a density is measured (the upper
part of the fraction) and renormalized (lower part of the fraction):

pij =
exp

(
−‖xi − xj‖2 /2σ2

)∑
k

∑
l 6=k exp

(
−‖xk − xl‖2 /2σ2

)
This results in a probability pij that measures the distance between two points in the
high dimensional space given as a probability. The bandwidth of the gaussian is set such
that a fixed number of points falls within this bandwidth, which is because different parts
of the space may have different densities. So Actually pij is computed like this:

pj|i =
exp

(
−‖xi − xj‖2 /2σ2

i

)∑
j′ 6=i exp

(
−‖xi − xj′‖2 /2σ2

i

)
Finally the conditional probabilities are symmetrized giving an overall average:

pij =
pj|i + pi|j

2N

• Each data point is now represented as a point in the low dimensional space and the
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process is repeated, however with a student-t distribution, now calculating qij:

qij =

(
1 + ‖yi − yj‖2

)−1∑
k

∑
l 6=k
(
1 + ‖yk − yl‖2

)−1
The reason for using the student-t distribution is the fact that is has a heavier tail that
allows for better modeling of far apart distances.

• The desire is for qij to reflect pij as well as possible. If they are roughly the same, the
structure must be roughly the same in both the high and low dimensionality. Kullback
Liebler (KL) is used which is a measure for differences between probabilities:

KL(P‖Q) =
∑
i

∑
j 6=i

pij log
pij
qij

The desire is to minimize this function, which is done using gradient descent which
gradually moves the points around until KL is minimized. The reason for using KL is
the fact that it penalizes when pij is large and qij is not, but not the other way around.
This is exactly why T-SNE only preserves the local structure of the data.

For this project, T-SNE was used at the very end to visualize the output data from one of
the finals layers in the network to investigate if there were differences in the image qualities
between different splits of the data (field strength, gender, diagnosis..).
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3 Methods

3.1 Datasets

ADNI

The datasets from ADNI used for this project were the ADNI1_Baseline_3T collection
containing 199 3T images and all baseline 3T images from ADNI2. They had a total of 840
images. Finally, 740 1.5T images from ADNI1 where also included. The overview .csv file
from downloading the data was used to classify each image as they included the subject ID of
each patient along with their diagnosis, which could either be Healthy (CN) or mild cognitive
impairment (MCI) or Alzheimer’s (AD). Furthermore, the image ID from this file was used to
ensure the identity of the image.
All subjects in ADNI2 that only had SAG_IR-SPGR scans where excluded, leaving 624 ADNI2
images for inclusion.
In the ADNI1 baseline3T collection, 48 subjects had two MP-RAGE images, where one was
N3_SCALED_2, and the other was N3_SCALED. Each subject had an N3_SCALED, so for
consistency, these were used for each subject. So in total, ADNI1 baseline3T consisted of 151
unique subjects.
All MCI patients were excluded as the model in this project only districts Alzheimer’s patients
from healthy patients.
All images were baseline 3D T1-weighted (MPRAGE) sequences.
The demographics of the entire dataset can be found in table 2.

AIBL

The Australian ADNI (AIBL) dataset was used for testing the final model. It consisted of 662
subjects whose demographics can be found in table 3. Only MCI images from this dataset were
disregarded.

Italian ADNI

The I-ADNI dataset was used for testing the final model but never for training. It consisted of
181 subjects whose demographics can be found in table 4. There were no MCI patients in this
dataset.
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3.2 Demographics of the subjects

In table 2 and 3 and figure 5 and 6 the demographics of the subjects in the sites can be viewed.
Considering that the MCI patients are excluded, is it observed that ADNI has quite an overflow
of 1.5 T images, a quite good balance between men and women and in age, and again high
imbalance in diagnosis. This case is even worse for AIBL that only has approximately 15% AD
patients. AIBL also consists primarily of 3T images and has an acceptable balance in gender.
I-ADNI whose demographics are in table 4 was also very imbalanced regarding diagnosis
containing only two CN patients. An imbalance in gender was also present, only containing
approximately 33% women. The age difference between AD and CN patients in I-ADNI is
inconclusive because of the low number of CN patients.
The age distributions of all three sites are almost the same; however, the average age in AIBL
and I-ADNI is slightly younger than ADNI. In both AIBL and ADNI, the age for AD patients
is higher than the age for the healthy controls.
Lastly, the differences in the number of images for each site is noted. Where ADNI has over
1000 images excluding MCI, AIBL only has just above 500, and I-ADNI does not even have
200.

CN AD MCI other Total
N 698 377 634 473 2182
Male/Female 300/398 196/181 389/245 243/229 1128/1053
Age avg. 75.1 73.24 74.1 71.2 73.3
1.5T/3T 505/193 235/142 564/70 104/369 1408/774

Table 2: Demographics of the subjects from ADNI1 and ADNI2.
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(a) (b)

Figure 5: Age distribution of healthy controls and Alzheimer’s patients in ADNI

Australian ADNI - AIBL

CN AD MCI Total
N 479 79 104 662
Male/Female 203/276 33/46 56/48 292/370
Age avg. 70.9 72.4 73.52 71.53
1.5T/3.0T 87/392 12/67 17/87 116/549

Table 3: Demographics of the subjects from the australian ADNI.

(a) (b)

Figure 6: Age distribution of healthy controls and Alzheimer’s patients in the AIBL dataset
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Italian ADNI

CN AD MCI Total
N 2 179 0 181
Male/Female 2/0 114/65 0/0 292/370
Age avg. 62.5 72.1 N/A 72.0
1.5T/3.0T 0/73 2/106 0/0 108/73

Table 4: Demographics of the subjects from the Italian ADNI.

(a) (b)

Figure 7: Age distribution of healthy controls and Alzheimer’s patients in the Italian dataset

Demographics regarding magnetic field strength and gender

Since field strength and gender for each image are also factors tested regarding a bias, schemes
are also made for an overview of their correlations. See table 5.

ADNI Gender 1.5T/3T AIBL Gender 1.5T/3T I-ADNI Gender 1.5T/3T
F 405/174 F 57/314 F 64/50
M 335/161 M 58/235 M 44/23

Table 5: Demographics regarding gender and field strength.

3.3 The paper from Basaia et al.

The neural network in this project is heavily inspired by the network described in the paper
by Basaia et al. called "Automated classification of Alzheimer’s disease and mild cognitive
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impairment using a single MRI and deep neural networks" [1]. The details of the architecture
are described in section 3.7. The network is based on such a paper, instead of developing a
model from scratch, since the desire is to investigate bias in current and active research and
ensure that the evaluated model is relevant in the research field. Furthermore, this gives an
intuition on what kind of architecture that works for this kind of problem.
Summarizing, Basaia et al. created a convolutional neural network which binary discriminated
between CN, converting MCI (Mild Cognitive Impairment), stabile MCI and AD. They used all
3T T1-weighted baseline images from ADNI1 and ADNI2, and in total, they had 407 healthy
controls, 280 converting MCI, 533 stable MCI and 418 AD patients.
They present models for converting MCI vs CN, stabile MCI vs CN, AD vs converting MCI,
AD vs stabile MCI, and lastly converting MCI vs stabile MCI . Before they feed the images
into the network, they are preprocessed in spm12, ultimately normalizing them to MNI305
space using the DARTEL algorithm, described in heavier detail in section 3.5. Afterward, they
developed a convolutional neural network, ultimately performing with 99% accuracy on the
model classifying CN from AD. The worst performing model, which was the last-mentioned
performed with 75% accuracy. They validated all models using cross-validation and used
transfer learning by using the weights from the CN vs. AD model to initialize the other models.
This process of reproducing the network solving the AD vs. CN classification problem is one of
the main goals for this project.

3.4 Tools

This section describes all tools that were used to complete this project. A full overview can be
found in figure 8.

The Thinlinc server

Thinlinc is a cross-platform remote desktop server used by DTU for making remote access to
their computer systems available to all students. The server was utilized to store all the data
from the sites and store code and models. Since the data from ADNI could not be downloaded
onto a local machine because of privacy issues and Thinlincs high storage space, the server was
very beneficial for this project.
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Figure 8: Overview of when each tool was used during the development of this project.

SPM12

Before the network can be applied, the data from ADNI had to be preprocessed using a tool
called SPM [22], which is a software that contains many algorithms for structural and interface
enhancements of MRI images. In this specific case, it was needed to normalize the images to
MNI space using the DARTEL algorithm. The reason why the DARTEL algorithm is used for
preprocessing is the allowance for a more accurate inter-subject registration of brain images.
Studies have shown that the DARTEL method has a very good normalization performance
[23].

HPC cluster

To run the code for this project, a HPC LSF cluster from DTU was used [24]. It ensures the
distribution of the available resources between the users by a queuing system according to what
the users need and what is available. HPC is a multiuser environment, where the user does
not run the code on a local system but instead asks the cluster to run it utilizing a job script
telling the cluster which application to run. Using the cluster was beneficial for this project as
a powerful GPU was needed for the network, which was unavailable locally. Furthermore, some
of the preprocessing in SPM12 took several days, and it would have been unfavorable to run
interactively as that is much more vulnerable to crashes than the cluster.
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Python and MATLAB

Python3 was used as the primary programming language for this project. The neural network,
and all tests and visualizations connected to it, was written in python. Python was also used
for several scripts to create the batch files for SPM12 and list the filenames for the preprocessed
images to feed into the network. MATLAB was briefly used to run the batch files from SPM12
on the cluster.

PyTorch

PyTorch [25] is a library implemented in python for deep learning utilizing both GPU’s and
CPU’s depending on how computationally heavy the deep learning task is. This library was
used for implementing the network with the architecture described in 3.7 and in particular the
following functions where used:
The 3D-convolutional-layers where implemented using the build-in function Conv3d(in_channels,
out_channels, kernel_size, stride, padding, ..) whose return value can be defined
as [26]:

out
(
Ni, Cout j

)
= bias

(
Cout j

)
+

Cin−1∑
k=0

weight
(
Cout j

, k
)
? input (Ni, k)

Where ? is the is the valid 3D cross-correlation operator, C is the number of channels and N is
the batch-size.
Another crucial functionality of PyTorch is the Dataloader and Dataset classes. The Dataset
class allows for storing the data, and the Dataloader wraps an iterable around the data objects,
making them easier to access. The entire data set was impossible to store as an array in memory
due to its size, so utilizing these classes was essential for feeding the data to the network.
The build-in method for Relu, batch-normalization, fully connected layers, sigmoid

and dropout was also used. All terms discussed above.

Further mentions

Matplotlib [27] was used throughout the entire project to visualize the loss plots. SKlearn
[28] and bioinfokit [29] was used to do a T-SNE analysis at the very end of this project and
visualize the results using different color splits. Pandas [30] was used for loading in data from
the files containing information such as diagnosis, gender, and age.
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3.5 The prepossessing steps

To follow the steps from the paper [1] the following steps had to be applied on each image
[31] using SPM12:

• The T1-weighted images should be segmented to produce GM, white matter (WM), and
cerebrospinal fluid (CSF) tissue probability maps in the Montreal Neurological Institute
(MNI) space.

• The segmentation parameters obtained from the first step should be imported in DARTEL.

• The rigidly aligned versions of the images segmented in step 1 should be generated to
create an "average space" over the entire dataset fitting the images to each other.

• The DARTEL template can now be created, and the obtained flow fields are applied to
the modulated 3D T1-weighted images of single subjects (generated by the segmentation
step). They are warped to the common DARTEL space and modulated using the Jacobian
determinants.

• The modulated 3D T1- weighted images from DARTEL are normalized to the MNI
template using an affine transformation estimated from the DARTEL GM template and
then a priori GM probability map without resampling.

The images from each of the steps are shown in figure 9.
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(a) The original MRI-image before any preprocessing
had begun. (b) DARTEL segmentation of grey matter.

(c) DARTEL segmentation of white matter.
(d) The final average template (template 6) for all
the 3.0 Tesla MRI images in ADNI1 and ADNI2

(e) The flow field.
(f) Final preprocessed image that is normalized to
MNI space.

Figure 9: The steps of processing a single image from the original image to MNI. All the images are
from the same subject
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3.6 Batch script

SPM12 (Statistical Parametric Mapping) was used to complete the steps above. Karl Friston
originally wrote SPM in MATLAB in 1991, and SPM12 is a significant update to the SPM
software used in this project to analyze the fMRI images. In SPM12, it is possible to make a
script applying different analytical and statistical processes to the images in a particular order
which was precisely needed for this project to follow the steps from Basaia et al.
Firstly, a DARTEL segmentation (Diffeomorphic Anatomical Registration Through Exponenti-
ated Lie Algebra [32]) of the grey and white matter on each of the 3D images was acquired.
The batch editor was used to create the before mentioned script, and the field native tissue was
set to "DARTEL imported" for the first two tissue types, which are the segmentations of the
grey and white matter. Then this batch script was saved as a template, and a python script
was written to produce a batch script containing all the filenames for the relevant images.
Running this batch-script on every image is computationally expensive, and therefore the HPC
-cluster was used. Usage of this cluster is described in section 3.4. After acquiring the DARTEL
segmentations, the DARTEL templates were created using every DARTEL -segmented image
from the previous step to create an average template from the entire dataset. The template
is modified for each image iteratively to align it to the dataset. So another batch script for
generating the template was created, and a python script was written to include all of the
paths for the image files.
Lastly, the images were normalized to MNI space using the template, the flowfields, and all of
the segmentations of grey matter from the previous step. This required a third batch script.
It is an important decision which images should be preprocessed together and thereby influence
the average template that the DARTEL algorithm creates. The following choices were made:

• All 3T images from ADNI were preprocessed together in one folder.

• All 1.5T images from ADNI are preprocessed together in a different folder.

• All AIBL images are preprocessed together.

• All I-ADNI images are preprocessed together.

These choices are a compromise of wanting the average template to represent the entire dataset
and not be too influenced by data that is not present in the current experiment. 3T-images
from ADNI were preprocessed together as the initial idea was only to use those. However, this
split was not done for AIBL and I-ADNI since there were many cases where the test set was
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a mix of field strengths. Furthermore, creating the templates is time-consuming, and using
different templates for preprocessing each image, would easily create confusion in the structure
of the data.

3.7 The architecture of the neural network

Parameters

For both the networks described in the following sections, some parameters were the same.
The optimizer used was ADAM, the loss function was the (Binary) Cross-entropy Loss, the
learning rate was 0.0001, and the batch size was 3. Basaia’s model was trained for 200 epochs
and the development model for 125 epochs.

The network from Basaia et al.

The goal for the design of the network is to resemble the architecture described in the paper
by Basaia et al. That network should consist of 12 convolutional layers, where the first two
layers have 50 output channels with kernel-size 5× 5× 5 with alternating strides 1 and 2. They
should be followed by ten layers with 100 to 1600 channels with alternating strides 1 and 2 and
a filter size of 3× 3× 3. Each layer should use ReLU as an activation function, and lastly, there
should be a fully connected layer and a logistic regression (sigmoid) layer as the output layer.
The paper does not mention use of zero padding, but the kernels eventually become too small
before the image is sent through every layer if zero padding is not applied. The network is
analyzed and described layer by layer to understand each modification to the input. First
assuming that zero padding is not applied.
Each image has dimensions 121× 145121, and one channel since the image is grey-scale. If the
first layer of the network has 50 kernels, a kernel size of 5, and a stride of 1, the output from
that layer will be of size:

117× 141× 117× 50

using the formula Oi = (((Wi −K + 2P )/S) + 1) where W is the input-size, K is the kernel
size, P is the padding i is the dimension and S is the strides.
Applying the formula again but with stride two gives:

57× 69× 57× 50
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(a) The beginning of the network. The star marks the transition from the figure above to the figure
below.

(b) The rest of the architecture.

Figure 10: The architecture for the Six-layer model
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(a) The beginning of the network. The star marks the transition from the figure above to the figure
below.

(b) The rest of the architecture.

Figure 11: Overview of the architecture of the model from Basaia.
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It gets a bit unclear what exactly happens in Basaia’s paper from this point, as there are no
details on the exact architecture of the individual layers. However, it is interpreted as gradually
increasing the number of channels up to 1600 through 10 layers with alternating strides 1 and
2. Increasing the number of kernels by 150 for each layer seems reasonable. So for the next
layer, the filter size is 3× 3× 3, there are 100 channels, and a stride of 1, resulting in an output
of size:

55× 67× 55× 100

For the next layer there are 2 strides, a filter size of 3 × 3 × 3, and 250 channels. So the
output-size is:

27× 33× 27× 250

It is continued with a layer with filter-size 3× 3× 3, stride 1 and 400 channels.

25× 31× 25× 400

Then continuing with a layer with filter-size 3× 3× 3, stride 2 and 550 channels.

12× 15× 12× 550

And with a layer with filter-size 3× 3× 3, stride 1 and 700 channels.

10× 13× 10× 700

And with a layer with filter-size 3× 3× 3, stride 2 and 850 channels.

4× 6× 4× 850

And with a layer with filter-size 3× 3× 3, stride 1 and 1000 channels.

2× 4× 2× 1000

Now the output is smaller than the filter, and no more layers can be added.
From these calculations, it must be assumed that Basaia used zero padding. With zero padding,
the output size of the first layer will be:

119× 143× 119× 50
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The formula from before is applied again. So for the next layer, the output has size:

59× 71× 59× 50

And continuing with the same approach as before:

59× 71× 59× 100

30× 36× 30× 250

30× 36× 30× 400

15× 18× 15× 650

15× 18× 15× 800

8× 9× 8× 950

8× 9× 8× 1100

4× 5× 4× 1250

4× 5× 4× 1400

2× 3× 2× 1600

When reaching the 12’th layer, the output size becomes smaller than the filter, accurately
making this network possible to implement. There are a few good reasons for zero padding. It
is easier to calculate the output dimensions from each layer, as showed above. Another is the
possibility to make the network deeper, also shown above, and the last one is that padding
keeps the information at the borders. This might not be so relevant for this problem as most
borders are just assumed to be black.
The problem with zero padding is that the background and borders of the images are not that
interesting for this problem. Zero padding makes these black background pixels have a larger
influence on the final result, hypothetically making the network more unstable.
After all the convolutional operations, the network was finalized with a 19200 × 128 fully
connected layer, batch normalization, and a 128 × 1 output layer activated by a sigmoid
function. See an overview of all the layers in figure 11. The choice of the loss function,
optimizer, learning rate, and the number of epochs is justified in the discussion, as those were
also factors that were not mentioned in Basaia’s paper.
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Figure 12: Plot showing the training-loss and validation-loss for each epoch during the development
of the network. Since the training loss is decreasing and the validation loss is decreasing and then
increasing, it is indicated that this model is overfitting.

A second network implemented for this project

The primary time on this project was spent on developing the neural network and training
it. A straightforward network was implemented to begin with, to investigate which kinds
of architecture improved performance, and get familiar with the data. The initial network
was not inspired by Basaia, since Basaia’s model was to complicated to start up with in the
debugging-phase. The simple network was implemented using a tutorial [33]. It consisted of
two sequences of convolutional layers with 32 and 64 output channels, respectively, followed by
a ReLU activation function and 2× 2 max-pool layers. Finally, a 258944× 128 fully connected
layer, followed by batch normalization, a dropout (0.15), and a final 128× 2 fully connected
layer, was added.
There were some concerns with Basaia’s model which are elaborated in the discussion underlying
the decision to include, evaluate and discuss this model as well.
To make sure that the network was learning correctly, a loss plot was created like the one in
figure 12. The goal for any neural network is that the training loss should go down for each
epoch as the network learns to recognize the training set. For as long as possible, the validation
loss should follow, but at some point, it will start to go up again, indicating that the model is
overfitting. An overfit model will perform very well on training data but not on unseen data,
and the goal is to find a balance using, for example, early stopping.
This model was edited layer by layer to improve performance, and in the process, both dropout
layers and batch normalization layers were also tested. The main inspiration was still Basaia’s
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network, so the aim was to shape it more and more into the same architecture. The number of
channels and layers are different from Basaia’s network, but otherwise, their principles are the
same. Another difference is that this network does not implement zero padding.
The first layer is the development model is a CNN with 32 channels, a stride of 1, kernel size of
3, and therefore an output of size:

119× 143× 119× 32

The next layer is a CNN with 64 channels, a stride of 2, kernel size of 3, and therefore an
output of size:

59× 71× 59× 64

The next layer is a CNN with 128 channels, a stride of 1, kernel size of 3, and therefore an
output of size:

57× 69× 57× 128

The next layer is a CNN with 256 channels, a stride of 2, kernel size of 3, and therefore an
output of size:

28× 34× 28× 256

The next layer is a CNN with 512 channels, a stride of 1, kernel size of 3, and therefore an
output of size:

24× 30× 24× 512

The next layer is a CNN with 1024 channels, a stride of 2, kernel size of 3, and therefore an
output of size:

11× 14× 11× 1024

Finally, it had a 1734656× 128 fully connected layer, batch normalization, some dropout, and
then a 128× 1 output layer activated by a sigmoid function. See an overview in figure 10.
See pseudocode for both models in appendix 7

3.8 Data augmentation

When the model was developed and trained, the running-loss was measured for each epoch and
plotted into figure 12. It was clear that the model was overfitting, so data-augmentation was
added. For each data item fed to the network, there was a probability of 0.5 of editing the
image. If not edited, the original image would just be returned for training. If edited, there
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was a probability of 0,33 that it would either be rotated, flipped, or deformed with random
values. If rotated, it could be rotated randomly from 0 to 30 degrees. If deformed, the control
points were set between 7 and 11, and the maximum displacement between 7 and 16. The
numbers were chosen to ensure the image were still a realistic representation of the kind of
data the model could be presented to in the future. Making each augmented image depending
on changing random numbers, produces a more extensive and different data set for each epoch,
explaining why the loss curves are still bouncing for the new model. However, it reduced
overfitting tremendously to augment the data.

3.9 Splits of the data

For training and evaluating the model for this project, the data set was split into three different
parts - training, validation, and testing. The idea here is to use the validation part for evaluating
the model through the development and finetune parameters and layers. The test-set is saved
for last, when the network is finished, to make a final conclusion on performance based on
completely unseen data, which has not influenced the development of the model. This ensures
that the results are representable to the model’s performance when used in the future on new
data.
Data augmentation was not added to either the test set or the validation set.
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4 Results

The models were evaluated by doing 6-fold cross-validation of the dataset and exclude 15 % for
final testing. The final test set was not involved in the CV.
The model was trained with the six different sets for 125 epochs, and six different accuracies
were acquired on the different splits such that an average could be found. For the CV, the
validation and training set was balanced.
The CV for the simple Six-layer model yielded an accuracy of 81,62 %. The worst performance
was 76.6 %, and the best performance was 89.8%. See table 6.
The CV for Basaia’s model yielded an accuracy of 83,3 %. The worst round yielded 76.9 %,
and the best round had an accuracy of 92.3 % See table 7.

Accuracy Specificity Sensitivity
Round 1 84.6 % 80.0 % 92.9 %
Round 2 76.9 % 100.0 % 67.9 %
Round 3 76.9 % 85.7 % 72.0 %
Round 4 79.5 % 75.0 % 84.2 %
Round 5 82.0 % 93.8 % 73.9 %
Round 6 89.8 % 88 % 92.9 %
Average 81.62 % 87.1 % 80.6 %

Table 6: Results of the cross-validation of the simple model with six convolutional layers

Accuracy Specificity Sensitivity
Round 1 79.5 % 76.0 % 85.7 %
Round 2 76.9 % 67.9 % 100%
Round 3 82.1 % 85.7 % 80.0 %
Round 4 89.7 % 94.7 % 85.0 %
Round 5 79.5 % 78.3 % 81.3 %
Round 6 92.3 % 96.0 % 85.7 %
Average 83.3 % 83.1 % 86.3 %

Table 7: Results of the cross-validation of the model from Basaia et al. [1].
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Figure 13: Plot showing the histogram over the accuracies achieved from testing 50 permutations of
data from AIBL on the Six-layer model. The data was equally distributed for all permutations.

4.1 Testing the model only trained on 3T images

The accuracy for the test set from ADNI was 83,83 for the Six-layer model and 80.8 % for
Basaia’s model. In both cases, the last model from the CV was used.
To test AIBL, 50 permutations of data were initialized with the same distribution of CN and
AD patients as there was in the test set for ADNI. All 50 permutations of data were tested on
the same model and rounded to one decimal, and the output was the histogram in figure 13.
The average accuracy, sensitivity, and specificity of these runs are given in table 8.

The average accuracy for testing AIBL 50 times with 50 different samples on the same
model (the simple Six-layer model) was 81,65 %. See the details in table 8 All of these test sets
had a balance: 74 CN and 23 AD patients for measuring accuracy to ensure that the accuracy
was not biased. However, the balance for measuring specificity/sensitivity is given in the table
as all images not involved in training or validation could be used to measure those.

Overall for these two models, they perform very well on ADNI and AIBL. They both achieve
accuracies above 80 %.

Page 35 of 64



Camilla Kergel Pedersen
Department of Computer Science

University of Copenhagen

Figure 14: Plot showing the histogram over the accuracies achieved from testing 50 permutations of
data from AIBL on Basaias model. The data was equally distributed for all permutations.

Accuracy Specificity Sensitivity CN/AD TP TN FP FN
ADNI 83.8 % 89.1 % 65.2 % 74/23 15 66 8 8
AIBL 81.26 % 81.4 % 80.1 % 392/67 54 319 73 13
Italian ADNI 68.4 % N/A % 68.4 % 0/73 50 0 0 23

Table 8: Result for the final testing of the Six-layer model- All images were 3T. The accuracy from
AIBL is an average of the 50 test runs with different permutations of 23 AD and 74 AD patients such
that the accuracies are comparable. The specificity and sensitivity is measured on the part of the
AIBL dataset that was 3T.

Accuracy Specificity Sensitivity CN/ TP TN FP FN
ADNI 81.8 % 87.8 % 65.2 % 74/23 15 65 9 8
AIBL 87.7 % 91.1 % 73.3 % 392/67 49 357 35 18
Italian ADNI 57.5 % N/A % 57.5 % 0/73 42 0 0 31

Table 9: Result for the final testing of the model from Basaia et al. - All images were 3T. The
accuracy from AIBL is the average of the 50 test runs with different permutations of 23 AD and 74
AD patients such that the accuracy compares. The specificity and sensitivity is measured on the entire
AIBL dataset that was 3T.
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Figure 15: Demographics for the training set of the mixed model.

4.2 Training model on both 3T and 1.5T images

The Six-layer model was also trained using the entire dataset of ADNI1 and ADNI2 (except for
the SAG_IR-SPGR scans). Then it was tested on different datasets, both consisting of 1.5T
and 3T images, and datasets that only had one kind. This was to investigate if there was a
bias between 1.5T and 3T and see if performance could be improved if significantly more data
was included. The training set had 200 1.5 Tesla images and 200 3 Tesla images and consisted
of 200 patients with AD and 200 healthy controls. The demographics of the training data can
be seen in figure 15.
Looking at the results in table 10 it is observed that, in general, the performance goes up even
when the test-set is only one kind of field strength, and the general ability to diagnose patients
correctly for this model is over 80 %. The models seem to perform best on ADNI, a little worse
on AIBL, who, however, has better sensitivity than ADNI, and even worse on I-ADNI, whose
metrics are all low. The ability to diagnose a patient as healthy (specificity) is higher for 3T
images, whereas the ability to diagnose an AD patient is higher on the 1.5T images. It could
be indicated that the models tend to overestimate 1.5T images and underestimate 3T images.
For the Italian ADNI, the sensitivity is generally lower, and the specificity was impossible to
measure because of the lack of healthy controls in this site.
The same thing was done for Basaia’s model, see figure 11, and many common patterns were
observed. However, Basaia’s model seems to have a tough time predicting AD patients since
every sensitivity is very low, and thus for I-ADNI, the performance corresponds to random
classification. Furthermore, Basaia’s model seems to have significantly better performance for
1.5T images. In general, the results for Basaia’s model are more unstable as higher differences
are observed both between sites, field strengths, and specificity versus sensitivity.
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Accuracy Specificity Sensitivity N 1.5T/3T N AD/CN TP TN FP FN
Mixed testset ADNI 83.8 % 84.1 % 83.5 % 357/140 170/327 142 275 52 28
AIBL (mixed) 79.2 % 77.0 % 92.4 % 0/558 79/479 73 369 110 6
AIBL (only 3T) 77.3 % 75.0 % 91.0 % 0/459 67/392 61 294 98 6
AIBL (only 1.5T) 87.9 % 86.2 % 100 % 99/0 12/87 12 75 12 0
ADNI1 (Only 1.5T) 82.4 % 82.1 % 83.0 % 357/0 106/251 88 206 45 18
ADNI1 (Only 3T) 87.6 % 90.8 % 84.3 % 0/140 64/76 54 69 7 10
Italian ADNI mixed 78.7 % N/A 78.8 % 108/73 179/2 141 1 1 38
Italian ADNI (3T) 73.3% N/A 73.3 % 0/73 73/0 53 0 0 20
Italian ADNI (1.5T) 82.4 % N/A 83.0 % 108/0 106/2 88 1 1 18

Table 10: Result for the final testing - The 6 layer model trained on both 1.5 T and 3T images

Accuracy Specificity Sensitivity N 1.5T/3T N AD/CN TP TN FP FN
Mixed testset ADNI 84.6 % 93.3 % 67.6 % 357/140 170/327 115 305 22 55
ADNI1 (Only 3T) 78.0% 93.4 % 59.4 % 0/140 64/76 38 71 5 26
ADNI1 (Only 1.5T) 87.1 % 93.2 % 72.6 % 357/0 106/251 77 234 17 29
AIBL (mixed) 91.9 % 96.2 % 65.8 % 0/558 79/479 52 461 18 27
AIBL (only 3T) 91.72 % 96.2 % 65.7 % 0/459 67/392 44 377 15 23
AIBL (only 1.5T) 92.9 % 96.6 % 66.7 % 99/0 12/87 8 84 3 4
Italian ADNI mixed 57.9 % N/A 58.1 % 108/73 179/2 104 2 0 75
Italian ADNI (3T) 44.0 % N/A 44.0 % 0/73 73/0 31 0 0 42
Italian ADNI (1.5T) 69.4 % N/A 68.9 % 108/0 106/2 73 2 0 33

Table 11: Result for the final testing - Basaia’s trained on both 1.5 T and 3T images

4.3 Investigating gender bias

It was also investigated whether there was a difference in performance between genders for
AIBL and I-ADNI. For this case, the model was trained on all AD or CN patients in ADNI
apart from a small validation set. Therefore there is no test set for ADNI.
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Accaracy Specificity Sensitivity CN/ TP TN FP FN
AIBL - Females 94.39 98.2 % 71.8 % 275/46 33 270 5 13
AIBL - Males 91.6 % 96.1 % 63.6 % 203/33 21 195 8 12
AIBL - All 93.2 % 97.3 68.4 479/79 54 466 13 25
I-ADNI - Females 57.9 % N/A 57.9 % 0/114 66 0 0 48
I-ADNI - Males 62.3 % N/A 63.1 % 2/65 41 2 0 24
I-ADNI - All 60.7 % N/A 59.8 % 2/179 107 2 0 72

Table 12: Test-results regarding potential gender-bias for the Six-layer model model trained on all
the data in ADNI.

This model revealed no significant differences between the genders overall. However, it is
observed that the performance is slightly better for the females in AIBL, and for I-ADNI, the
better performance is for the males. It is noted that the general difference in performance for
AIBL and I-ADNI becomes even more evident.
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5 Discussion

5.1 Data selection

One of the first significant decisions for this project was how to choose the data. Only 3T
baseline images was used initially since this would ensure consistency in the data as all images
would have similar quality.
The point of training the Six-layer model on both 1.5T and 3T images afterward was to observe
if a bias was evident when only evaluating on either 1.5 T or 3.0 T images and to investigate the
general performance when adding more training data. The hypothesis was that the difference
in signal-to-noise ratio caused by the different magnetic field strength would cause the network
perform better on the 3T images with the high signal-to-noise ratio. Only MPRAGE images
were used for this project as it was a concern that different modalities in the scanners might
affect the network in an unforeseen way. This was why all ADNI2 subjects that only had
SAG_IR-SPGR scans were excluded.

5.2 Challenges from the datasets

Imbalanced data

Since the main topic of this project was to test for demographic bias, it proved quite the
challenge that both AIBL and I-ADNI were so imbalanced. Even more so because they were
imbalanced in different ways - Where AIBL had many controls (almost 84 %), I-ADNI had
only two healthy controls in total. This fact made the accuracy impossible to compare, and
therefore the sensitivity for I-ADNI was the only reasonable performance measure. However,
for AIBL, the sensitivity was based on very few samples (79/479), and therefore, it is hard to
ensure the robustness of the performance.
The amount of data for training was also challenging, especially for the models only trained
and tested on 3T images. After the exclusion described in section 3.1, only 335 3T (142 AD,
193 CN) images were left for training, validation, and testing. Furthermore, the training set
was chosen to be balanced to eliminate potential bias, and some AD patients should be in all
three splits to test appropriately.
The data augmentation should remedy this to some extent for the training set. However, the
imbalance of the test sets that the balancing of the training set creates for 3T ADNI images is
still an issue. The low data sample caused a worrying compromise between the robustness of
the measured performance and the amount of training data.
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Magnetic Field strength

As argued earlier, it is essential for training and testing that the magnetic field strength is
the same for all the images. Throughout this entire project, it has been quite challenging to
decipher the field strength of a given image. They were not present in the essential .csv files,
holding diagnosis and demographics.
For ADNI2, all images were 3T [34]. A part of the ADNI1 collection was named "baseline3T"
on the ADNI website, so all images in that collection are assumed to be 3T as well, even though
none of the images could be looked up using the advanced search on the ADNI webpage to
ensure this. Their image IDs had no matches. The remaining images from ADNI1 are assumed
to be 1.5T, and many attempts were made to ensure this. The ADNI webpage was searched for
a datasheet containing this information which should be possible to find using the advanced
search function. However, for ADNI1, the advanced search does not seem to work correctly, as
an image cannot be found on its ID; there were simply no matches for many of the images.
The only kind of information that could be found was the scheme shown in 21 which is not
specific for each image but suggests that some images in ADNI1 are 3T. This should be noted
when evaluating the results.
However, for AIBL, this information was found. Using the advanced search on the ADNI
website for all baseline 3D images from AIBL, it was possible to view the magnetic field strength
and Image ID for each Image. That could be downloaded as a .csv. Merging that .csv, with
the dataset from AIBL on Image IDs and Subject, gave a complete overview of the magnetic
field strength of AIBL.
For I-ADNI, the task was finally straightforward as the field strength was given in the filename
for each subject.

Cleaning up and finding information

Much time for this project has been used to clean up and rearrange the non-image data.
Demographics and group size from the ADNI papers [3] [4] [5] did not match up to what
was present in our downloaded set, and finding information on why this was the case, was not
possible. Finding a diagnosis for each image also proved challenging as the csv files that followed
the downloaded images from, for example, AIBL, did not hold this information. The webpage
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for AIBL had to be investigated to find this. Furthermore, it was of uttermost importance that
the image ID for an image was present with the diagnosis in the .csv-files as this was the only
factor that could ensure that the diagnosis and image matched up.
I-ADNI was the most organized dataset. Every needed information was present in either the
filename for the image or the .csv file. However, the different structures of the image files had
to be adapted to ADNI and AIBL for ease of implementation.
The .csv files for each site were extended with columns containing the path to the preprocessed
image, the magnetic field strength, and the site. This was to ensure consistency and ease of
implementation.

5.3 Implementation choices

A very crucial part of this entire project was to implement the neural network. During the
implementation, many choices had to be made regarding design and architecture. In the
following subsections, the essential choices are justified.

The design of the network

As stated in section 3.7, the basics of the network are entirely based on the paper by Basaia et
al. [1] because the study showed that this architecture had a very high performance on this
specific problem. So layer by layer Basaia’s model was implemented, constantly testing that
the current model was learning satisfyingly by checking that the loss consistently decreased for
each epoch. Zero padding had to be added at some point to create more layers, as discussed in
3.7.
Getting started on the network was difficult. The architecture from Basaia’s model is very
complicated and challenging to implement in one go. Memory limitations were also quickly
reached, and a data loader from PyTorch had to be utilized. Therefore a choice was made
to implement two networks. Basaia’s model was put away, and the tutorial from [33] was
implemented instead. It has a straightforward structure that was learning from the beginning,
even though the performance was not very good. Much time was used to improve this model
and turn it gradually into Basaia’s while maintaining acceptable performance; however, it
was discovered by a lot of trial and error that the model did not seem to benefit from having
12 layers. Adding layers sustained learning until a given point (6 layers), and then it did
not improve performance anymore. Contrarily the results became more unstable, and the
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computation time was increased.
It can be hard to predict the final performance precisely in the development phase, as many
parameters can be tweaked outside the layers, which might influence performance. Therefore,
the choice was made to continue with Basaia’s model even though it did not improve performance
and keep the development model. It was kept in mind that the architecture of Basaia’s network
was never clear and that some vital parameter tuning might be missing.
During development, the biggest challenge was the run time of training and the availability
of the GPU on the cluster. Each model took a steady amount of time to train and test, and
for each minor tweak of a parameter, training had to be repeated to make sure what tweak
actually impacted performance. The GPU queue was often occupied, and sometimes it could
take over 10 hours before a job was able to run and then another 10 hours to train the network.
Eventually, it was decided that the performance was acceptable and that sufficient time had
been spent experimenting. It is entirely possible that more tuning of the network could have
made it perform even better. Finally, a more explicit description from Basaia et al. of the
network might have given more accurate results and saved time on testing architectures. It
was even tried to ask Basaia et al. for clarification; however, no answers were received.
Beneficially, much was learned from this process about this problem.
Most of the tuning in development was done based on experience and trial and error, but some
of it was chosen based on different arguments presented in the below sections.

Max-pooling versus increasing strides

As discussed earlier, the purpose of a convolutional layer in a network is to summarize the
features of the image. However, these summaries can be very sensitive to the location of
the features in the input, and there can be a desire to make this more robust since this will
have a significant effect if an image is shifted or rotated just a fraction. One can achieve this
by downsampling the image and keeping essential signals using pooling. For convolutional
networks, max pooling is used as the interest lies in the crucial features. This is a very cheap
operation that’s easy to implement.
An essential part of the architecture in Basaia’s network and the one built for this project is
that they do not contain max-pooling layers. The usual way to construct a network is to include
a series of sets consisting of a convolutional layer, an activation layer, and a pooling layer to
downsample. However, for this project, the sets only contain the convolutional layers with
alternating strides. The fact that the strides of each convolutional layer alternate between 1
and 2, ultimately also downsamples the image. Research has shown that constructing a network
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like this ending with a few fully connected layers can actually maintain or even improve the
final accuracy on well-known deep learning architectures like CIFAR-10 and ImageNet [35].
In general, it should be noted that convolutional layers has learnable parameters, and therefore
are more computationally expensive. Furthermore, the architecture is simplified as different
types of layers is not needed. However, max-pooling is a cheap and straightforward operation
that makes the network faster.
The idea to use alternating strides originated from Basia’s paper [1].

Number of epochs

In order to determine the number of epochs for both models, early stopping was used. The
data-set was split into a training and validation set (only 3T images from ADNI were used for
this part), and the model was trained for 400 epochs at first. Then a plot of the training-loss
and validation-loss was used to determine when to stop. As long as both losses are decreasing,
it will make sense to continue training, but at some point, the model will overfit the training
data and inherit the noise and potential imbalance of the training set. This will result in a
lower ability to generalize, and therefore performance will decrease on unseen data increasing
the validation loss. This is the point to stop training in simple cases. However, in practice, the
training of a neural network is stochastic and noisy. The performance of the validation set can
be bouncy between epochs, which was also the case for this project. Therefore the point for
stopping was eyeballed by looking at the general tendency of the curves. Based on this, 125
epochs were chosen for the Six-layer model and 200 epochs for Basaia’s model. See figure 16.

Noisy loss curves

Due to the noise of the loss curves, pinpointing the exact fitting number of epochs was
challenging. A reason for the noise could very well be the small batch size of 3 and the fact
that the training data changes for each epoch due to the augmentation. However, since each
data point was a 3D image containing 121 ∗ 145 ∗ 121 = 2.122.945 pixels, memory restrictions
did now allow for a bigger and more generalizing batch size. Another option could also be that
the initial learning rate is still too high even though it is adaptive. ADAM might still need too
many epochs to find a reasonable learning rate in each direction. However, considering that
training for 200 epochs is already time-consuming and that lowering the learning rate would
mean training for even more epochs, the value of the learning rate was maintained.
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(a) The loss curves for Basaias model (b) The loss curves for the 6 layer model

Figure 16: Plot showing the training loss and validation loss for each epoch during the development
of the networks. It is observed that both loss curves are noisy, but it is possible to spot a general
tendency, and at around 125 and 250 epochs, the validation loss seizes to decrease, so this is where to
stop. The lowest validation loss is roughly the same for each model.

Batch normalization

The two final layers of both models were fully connected layers separated by a batch normaliza-
tion layer. The experience proved that not doing the batch normalization caused the model to
classify everything as the same class regardless of training time. This would suggest that some
neurons have inappropriately large weights, causing them to eliminate smaller but important
signals. This is a pretty common problem [36].

Learning-rate and optimizer

Adam was chosen as the optimizer because it has both an adaptive learning rate and momentum,
as discussed in the background section. It is the most used optimizer for neural networks.
However, recent optimization algorithms have proven to be better and solved some of the
pitfalls of ADAM using other adaptive momentum approaches. However, their implementation
into the machine learning world is going slow, and therefore, they are not used. They could be
considered implemented for this network in the future [37].
The learning rate was based purely on previous experience with convolutional neural networks.
Even though ADAM can adapt it during training, the initial choice is still relevant. Initializing
far away from the optimal learning rate(s) would increase the time to find the optimal rate for
each data point, and there are many to consider. Higher and lower initial learning rates were
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tested, but based on the behavior of the loss functions, a learning rate of 0.0001 was chosen.

5.4 Metrics for evaluation of results

It proved to be a challenge to measure the performance of the models accurately, such that
an eventual bias would be clear to spot. Looking at the results for the cross-validation (see 6
7) and the loss curves in, for example, figure 16 it is observed that the performance for each
epoch differs a lot. Testing models trained for the same amount of epochs on the same test-set
revealed very unstable accuracies ranging from 75% to 90%. This is a consequence of the noisy
loss curve that is explained in section 5.3. In an attempt to reduce this instability and ensure
that good accuracies were not just pure luck for the choice of test-set, cross-validation was
done. This was also why 50 different permutations of data from AIBL were tested on the final
model. It made the results a lot more generalizable. Doing 50 permutations of I-ADNI with a
comparing distribution of AD and CN patients was not possible due to the lack of CN patients.
The way cross-validation was used to evaluate the network is a little different from the way
cross-validation is typically used. Conventionally it is used to tune a parameter. However, one
is limited when working with such a large dataset and a deep and complicated network. Many
epochs are needed to gain the desired accuracy, and even doing one epoch is computationally
expensive and takes much time. Many of the last tested networks close to the final ones took
over 10 hours to train. K-fold cross-validation requires k training runs which would then take
days for each parameter test, so this was deselected. However, when the model was finished, and
it was decided that the performance was acceptable based on the validation set, the model was
trained for a fixed number of epochs six times to ensure the final accuracies were representable
to future test-runs.

5.5 The two different networks

In the following, it is finally described what was learned from the results of the two networks.

Evaluating the model from Basaia et al.

In the paper written by Basaia et al., they report an accuracy of around 99% for the model
described and implemented in their project. As shown in the results reported above, the model
implemented for this project cannot match that accuracy. There can be several reasons for this.
Firstly, there may be differences in the architectures of the two models since Basaias model
is not described in heavy detail in the paper. The channels and strides of each layer are
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never described, only that the strides should be alternating between one and two and that
the channels should range from 100-1600. The choice of the optimizer, loss function, initial
learning rate, and number epochs is not mentioned either. Furthermore, zero padding is only
assumed because of the argument presented in the architecture section 3.7. Also, Basaia et
al.’s paper never mention the use of batch normalization. However, the experience was that it
had to be introduced very early in development in order for the network to learn.
Secondly, it should be noted that the two models that are presented in this project do not differ
a lot in general performance, but they do differ a lot in complexity and robustness. Basaia’s
model has so many layers that it can only be implemented with zero-padding, suggesting that
their signal will be heavily dominated by 0. This means that the last layers will not contribute
with any new information. This is also what the results suggest since a much simpler network
with fewer layers can match the performance. Challenging Basaia’s network with different sites
causes heavier problems than the Six-layer model show. Thirdly it must, with caution, be
stated that accuracy of 99% must be too good to be true. Alzheimer’s is a clinically diagnosed
disease; therefore, the MRI scan will never be sufficient to make a diagnosis. An accuracy this
high suggests that this is possible. However, without clinical symptoms as features, there should
be several false positives and false negatives among the patients in the test-set. There will be
cases where there are only clinical symptoms and cases where the MRI suggests Alzheimer’s,
but there are no clinical symptoms present. Fourth, it is also noted that Basaia had access to
a lot more 3T images for training and testing, which could also improve their performance.

Evaluating the simple 6 layer model.

Since the performance of the Six-layer model matched the performance of Basaia’s model
and showed significantly more robustness, it was the primary model used for the different
experiments described in this project. The experience with Basaia’s model was that even minor
tweaks or imbalances could have significant impacts on performance. Therefore it did not
contribute to the gender experiment. A reason for the instability could again be the complexity
of the model - usually, adding more layers will increase performance as it will allow for more
features to be picked up, but only up to a certain point. After that, it will tend to overfit the
data since it might pick up on features that are not relevant for the given problem. Also, for
obvious reasons, the simple model was a lot faster to train several times and made more time
for experimenting with the training sets and architecture.
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5.6 Overall performance

In general, the pattern for both models and the different ways they were trained was that they
had more challenges diagnosing sick patients than classifying healthy ones (low sensitivity, high
specificity). This problem was especially significant in Basaia’s model and almost eliminated in
the Six-layer model trained on both 1.5T and 3T. Due to the imbalance of data and especially
the fact that I-ADNI had almost no healthy controls, the best measure for the bias is not the
accuracy, but the sensitivity, which measures the model’s ability to predict if someone has AD.
It is noted that the sensitivity of the Six-layer model trained on 3T images is low both for
ADNI and I-ADNI. However, the lack of AD patients in the ADNI data might have made the
result for ADNI a bit unrepresentative. However, since there were only 142 AD patients with
3T images in ADNI, it was a compromise that had to be made in order to ensure that there
was also enough training data.
Nevertheless, AIBL has a very high sensitivity compared to I-ADNI, which both have a sufficient
amount of AD patients in their dataset to make them comparable. It is cautiously concluded
that the Six-layer model has a better performance on AIBL than on I-ADNI.
It is the same case for Basaia’s model only trained on 3T images. However, it seems that it
overfits a bit more on ADNI in general regarding sensitivity than the Six-layer model since
both the sensitivity for AIBL and I-ADNI drops. The accuracy for AIBL is higher than ADNI,
which intuitively seems a bit odd, but there could be many reasons for this. There could be an
unforeseen bias that makes the data in AIBL easier to predict. This could be many cases where
the brain and mental status of the patient correspond, unexpected differences in modality
between scanners resulting in different qualities, or a human bias in doctors’ evaluation. It is
noted that that the difference in ethnicity between AIBL and ADNI does not seem to have a
bad influence on performance.
The investigation for ethnic bias becomes a lot more tangible when looking at the Six-layer
model trained on a more extensive data set, including 1.5 T images. The data set was balanced
both on magnetic field strengths, diagnosis, and genders. It is observed that the performance
on I-ADNI is significantly worse, especially on the 3T images, and that the general performance
is stable and pretty good. As before, it is not safe to conclude that there is an ethnic bias, but
it is safe to state that the results indicate that the model has a hard time on I-ADNI, and one
reason could be an ethnic bias.
There seems to be some difference in performance for the two field strengths. In particular,
the model from Basaia distinguishes comprehensively in performance, and surprisingly the
1.5T images seem to perform best. In comparison, the predictions for 3T images, especially
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I-ADNI, are tremendously wrong, being even below null accuracy. It might be for the same
reasons that AIBL performs better than ADNI, and it should also be noted that the test sets
are not balanced regarding diagnosis, making the results harder to interpret. It should also
be considered that the performance of the Six-layer model for this experiment is, in general,
better, especially the sensitivity, and that the difference is not so significant here as it is for
Basaias model, just like with the ethnic bias. It is observed that the Six-layer model trained on
the same data only inherits the problem vaguely and even has better performance on 3T for
ADNI. A part of the reason for that could be that it is not ensured that there are not some 3T
images among the set of 1.5T images in ADNI (see secton 5.2). However, this still disturbs
the pattern of 1.5T images performing better since it should be ensured the there are no 1.5T
images in the 3T part of ADNI.
Nevertheless, this should be investigated further with more data and other models. It could
also be tested for models trained on only one kind of field strength using the same principle as
for the testing of ethnic bias.
The last experiment was to investigate a potential gender bias. However, this did not yield
any significant differences. The experiment does not confirm that no gender bias is present -
that would require more data and a more extensive quality check of the training data, which is
not evenly balanced between genders. The choice to include all the data was made since this
would resemble what is done in practice, as more training data seems to improve and stabilize
overall performance. Since the number of males and females is 496 males and 579 females, the
imbalance is also not significant. With this experiment, a significant difference in performance
between AIBL and I-ADNI, is observed which magnifies the results from the two previous
models, suggesting that an ethnic bias is present.

5.7 Improving overall performance

It seems that more training data continues to improve the performance of the models. In
general, the best performing model was the one testing for gender bias, which was also trained
on the most data. However, one should be careful with this as the training data is not balanced
in any way. Conclusively, it is indicated that including more balanced training data might
improve performance while maintaining robustness.
Another way to improve performance could be to consider cropping the dark areas around
the brains away. This would eliminate the possibility that noise in these areas is picked up as
features and center the convolution on the essential structures. Another option could be to
add learned data augmentation. Studies [38] show that using pairwise alignments of images
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from the same class to make a learned transformation can improve performance on CNN’s.
Apart from the design of the networks, which can always be explored even further, there are
some factors of AD whose presence might have improved the performance.
The fact that AD cannot be diagnosed solely from a brain scan should be considered. There
may be several cases in the training set where these two factors do not add up. It could be
a speculation that there might be an overflow of patients, especially in the 3T images with
diseased brains, and a low disability score in the training set. This would mean that the
network has been exposed to many diseased brains classified as healthy, and therefore will have
a higher tolerance on features that indicate illness in the test set. In general, the network will
have a hard time with patients whose mental status does not correspond to the level of disease
in their brains, and the distribution of these cases is unknown in these datasets. The overall
performance of the models could probably be improved by including the clinical symptoms as
features and make it a multi-input network.
However, clinical symptoms can be tough to translate onto an AI . Evaluation practices should
be very consistent for this to have maximum effect, and given that each doctor will have some
amount of human bias, this can be very hard in practice. Even if many tests are standardized,
doctors still have to evaluate parts of the process. A suggested way to accomplish some of
this is suggested in the following paper [39] where they propose an AI-ecosystem that ensures
cooperation within the field. This should ensure that the clinical evaluation, the data collected,
and the developed models are presented in a common framework such that everything is kept
as consistent as possible all over the field. However, with the rapid development that AI is
going through, an idea like this could decay only to be an admirable effort. Such a framework
would easily take so long to implement that its methods will be outdated before then.
Being aware that the clinical symptoms might also hold some bias and the risk of a human
bias might be more prominent for this area, they should still be considered essential features.

5.8 Preventing unforeseen bias

Even though this project’s entire scope is wrapped around algorithmic bias and fairness, it
is quite possible this it is still biased in an unforeseen way. This is one reason why the
conclusion that an ethnic bias is present is made with much caution. There can be a bias in
the demographic data that was not investigated (which could cause an aggregation bias in
the model), and there might also be an unforeseen bias in the demographics that where not
accessible. For this project, and in general, it is often impossible to balance data on every
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demographic factor because that would cause too much data to be excluded. Also, even when
balancing perfectly on each factor, there might exist problems because one side of a balanced
split might have more detailed features than the other. This was another reason why the
magnetic field strength of each image was considered essential for this project, and there might
be other factors with similar problems.
It could be speculated that Measurement bias is also present since all SAG_IR-images were
excluded because there was a hypothesis that the difference in modality might affect performance
in an unforeseen way. This should have been investigated further to make a safe conclusion.
In each case, numerous considerations were made to prevent unforeseen bias as much as possible.
Both ethnicity, gender, and magnetic field strengths were tested for bias, and for the mixed
data trials, field strength and gender were also balanced in the training set. AIBL and I-ADNI
were kept out of all training to avoid the risk of inducing a bias in ethnicity, as this bias was the
whole starting point for this project. In practice, one should be aware of this balance as well.
However, ensuring a bias-free training set is challenging in practice. It is not safe to conclude
that all patients in the American data-set are, in fact, American natives, and the same goes for
AIBL and I-ADNI. Keeping track of the demographics for both training, validation, and test
sets has significantly been prioritized during this project, but it is doubtful that everything has
been considered. In practice, some of the demographic information might be unavailable or
impossible to interpret.
Human bias should also be considered. Even though clinical tests for AD are standardized,
there still might be differences in how the doctors diagnose the patients across the world, and
some doctors might be more likely to give the diagnosis than others.

5.9 T-SNE

T-SNE was used to visualize the data after the first fully connected layers activation function,
where the output was a vector of 128 features. This was to get an overview of the variances
between the different splits of data. There has been much speculation for this project whether
the image quality and performance of the network differs between sites, tesla-units, genders,
and diagnosis. T-SNE provides an option to examine this visually. The input to T-SNE was
the entire concatenated test set consisting of all three sites and both 1.5T and 3T images. The
two networks were trained on a balanced set of 1.5T and 3T images.
The results of the T-SNE can be found in figure 17 for the Six-layer model. T-SNE was also run
for Basaia’s model, see figure 18. Both yielded a lot of the same patterns. However, Basaia’s
model was a bit more significant in the variances, and it was very clear from the plot of the
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confidences and diagnosis that Basaia’s model had significant issues with the AD patients,
particularly the ones from I-ADNI as they shared color patterns. This is not the case for the
Six-layer model, which has a very different confidence plot.
The highest confidences for the Six-layer model are found in the middle of the "clusters,"
indicating that the confidence levels do not relate to the splits but have a unique pattern. It
seems that images that are locally close to many other images are easier to predict.
Taking point in the plots from the Six-layer model but describing patterns that the models
share, it is observed that minimal variance is found between the genders, which would also be
expected after investigating gender bias. However, much variance is found in all other splits.
It is observed that the two "sides" of the figure mainly represent variance between the sites
and between 1.5T and 3T. The entire left side is 1.5T images from ADNI, whereas the top
and bottom seem to mark the diagnosis groups’ variance. It should be noted, however, that
almost no CN patients are present in I-ADNI, which could camouflage the tendency between
AIBL and I-ADNI as variance in sites. The variance might only occur because there are an
overflow of CN in AIBL and vise versa in I-ADNI. Conclusively, the T-SNE analysis backs up
the results suggesting variances in image quality between all splits besides the gender. The
variances in performance are more distinguishable for Basaia’s model, which was also what the
results showed.

Page 52 of 64



Camilla Kergel Pedersen
Department of Computer Science

University of Copenhagen

(a) T-SNE colored by dataset (b) T-SNE colored by Field Strenghts

(c) T-SNE colored by diagnosis (d) T-SNE colored by gender

(e) T-SNE colored by confidence

Figure 17: T-SNE plots for the entire collections of tests sets using the output from the first fully
connected layer from the Six-layer model as features.
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(a) T-SNE colored by dataset (b) T-SNE colored by Field Strenghts

(c) T-SNE colored by diagnosis (d) T-SNE colored by gender

(e) T-SNE colored by confidence

Figure 18: T-sne plots for the entire collections of test sets using the output from the first fully
connected layer from Basaia’s model as features.

5.10 A discussion on bias and fairness

Before wrapping this project up, the concept of a bias in algorithms for diagnosing patients
should be discussed. In the background section, the term "bias in algorithms" is defined, but
where does this bias originate, and how could it be remedied?
This project is showing concerning effects of a demographic bias, and other concerning bias-
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problems are countless. Studies have shown that diagnosing idiopathic pulmonary fibrosis
has a gender bias [40], that skin lesions can be harder to detect on black skin [41] or that
the impact Alzheimers can have on patients can be affected by their IQ [12]. The common
factor for this research is that the bias originates already in (maybe unknown) factors from the
subjects’ psychical and mental state, which could raise a very critical ethical problem when
selecting patients for a trial. Suppose the desire was to create a data set with no bias, then
all bias-potential factors should be recorded for each patient. Their IQ should be recorded,
their skin color should be examined, and their amount of breast tissue should be determined.
Given that the before mentioned examples are far from the only ones, the sky is the limit on
what could bias the performance of diagnostic tools, and each factor that requires a doctor’s
examination could induce a human bias. For this project, a similar problem was observed since
the patients’ clinical symptoms were not taken into account. They could hold an unknown bias
if the data set contains many patients with high IQ or many patients whose mental status does
not correspond with their MRI. Especially the IQ might not even be possible to record if the
patient is already showing symptoms.
Even if data is available, it can still be hard to find and understand. As it was seen with
the difficulty of finding the relevant information on field strengths for each image, it can
also be challenging to retrieve the information even if it is known to have relevance and is
available. A data set like ADNI has many columns that are not self-explanatory, especially if
the knowledge about medicine is limited. Given that studies [2] also show that demographics
are rarely recorded in papers based on diagnosing tools, this problem of retrieving the relevant
demographics might be a common issue. This is speculation originating from the experience of
this project.
For this discussion, it should also be considered that remedying a bias might have a cost. For
example, the central portion of patients in some given country is of that country’s origin, so it
would not affect them that a model might hold an ethnic bias. However, it would affect the
natives if remedying the bias causes the performance of the natives to drop for the ethnic bias
to disappear. There is always a limit to the amount of training data and information that one
model can hold, and a compromise here might have an unforeseen cost. A possible solution is
elaborated on in the next section. Conclusively, ensuring that no bias is present in a data set is
nearly impossible. However, a great step towards this is to raise awareness and investigate the
effects of a bias in common models, which was also the motivation for this project.
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5.11 Suggestions for remedying biased data sets

Finally, now that it is concluded that limited data sets and algorithms are creates tremendous
problems that might be hard to solve, suggestions for remedying this and the potential downfalls
of those ideas are presented.
As suggested in [2] it could be considered to standardize the information that needs to be
present in a data set in order to include it in a paper. However, this would require a massive
amount of cooperation worldwide and would not necessarily eliminate the bias. It would make
it general - one mistake in this standardization would impact everyone, but the mistake would
be more straightforward to fix - a general change would remedy it. This is a limited approach
that should be considered carefully. As discussed earlier, eliminating every bias is almost
impossible even if it is tried to be aware of everything.
Another suggestion could be to use a toolkit like Aequitas [42] that can test your data set
for bias if you use it as input. Although this might sound like a magical solution, this again
raises the question of which factors one should be aware of and if these factors are present in
the data set. This toolkit should also follow some conventions that are said to be the "ground
truth," but how to ensure they did not miss something? A third way could be to be aware of
the potential bias even before data collection begins. Even though it might be hard to know
which demographics are relevant for a potential bias, some beforehand knowledge could be
considered. For example, it would be intuitive that skin color could affect the ability to detect
skin lesions or that gender (more specifically, breast size) could affect a lung scan. A way to
improve it might be to balance how much of such data that would be needed to balance out
the problem - maybe more data for the weak class should be provided as each data point would
contribute with fewer features. However, the potential issue would be to find that balance and
not unintentionally bias the algorithm in another direction trying to do this. The last thought
could be related to the discussion above about an intentional bias. In some cases, it might be
more beneficial to have several AI’s that are "biased" in different ways and then pick the AI
based on the demographics for the patient. This could make room for an AI to specialize in
one particular problem like detecting lesions on black people and also remedy the fact that
finding a lesion on light skin and dark skin might not be similar problems according to an AI .
Even the architecture of the AI might need to be different. It could be speculated that the
CNN for dark skin might need more layers since the problem is more complicated.
A problem that could arise from this would be that it requires more resources to train and
develop different AIs, and it might also not always be clear which AI to use, which could result
in a human bias when selecting the model.
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6 Conclusion

This project aimed to investigate whether a bias in a training data set would propagate as a
bias in a deep learning model.
Two neural networks with similar structures, one with fewer layers and comparable performance,
were successfully implemented and trained on the American ADNI dataset. Firstly only 335
3T images were used for both training, validation, and testing, suggesting a difference in
performance between ADNI/AIBL and I-ADNI. However, not nearly enough test data was
present to make any safe conclusions for effect of ethnic bias.
So to investigate further, the models were trained on a training set balanced on both magnetic
field strength and diagnosis consisting of 400 images. Here it was observed that, especially
for the simplified model, the results became more stable because of the large data increase.
It became clear that for further investigation, a simplified model trained on balanced sets of
magnetic field strengths and diagnosis with as much training data as possible, yielded the most
consistent results.
A general variation in performance was detected for this model. The difference was around 5 %
between ADNI and I-ADNI (sensitivity), and no stable difference between ADNI and AIBL was
observed suggesting that an ethnic bias is present when testing on I-ADNI. Furthermore, the
effect of field strengths was investigated, and it was found that the performance was generally
higher for 1.5T images differing up to 10 %. Gender bias was also briefly investigated but
showed no significant difference. However, the inconsistency between the results and the low
amount of test data makes these results very vulnerable.
In conclusion, it is stated with caution that the results of the experiments for this project
suggest a concerning presence of an ethnic bias. It should provide great motivation for paying
attention to the ethnic demographics of a training set in the future.

6.1 Further work

More experiments could be investigated for the influence of bias, starting with the other
models that Basaia is presenting, differentiating, i.e., MCI and AD patients. Data sets from
more countries should also be acquired, especially countries where racial differences are more
significant. This could be Japan or India, where ADNI data sets are also available.
In this project, the important part of the demographic data was the origin of the subjects.
However, an important question to be asked should be - which demographics are relevant?
Studies have shown that many medical papers never reveal demographics from the data that
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they use [2], and as we’ve argued, bias can be present in many unexpected demographic factors.
The entire aspect of this should be investigated more thoroughly.
Finally, the European Commission is setting up some rules for the usage of AI [43]. They
should ensure the security of humans and companies’ basic rights, such that confidence for the
performances of the AI’s is ensured by ranking them on risk factors, where one of them is bias
in data sets and models. It should be clearly explored what demands a data-set should fulfill
to ensure such requirements and critically evaluated if such rules are even realistic to enforce
in practice.
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7 Appendix A - Details of the implementation

Both of the neural networks were implemented in python with PyTorch [25] and pseu-
docode can be seen in figure 19 and 20. The network itself was implemented as a class
where each layer is an attribute, and the forward function determines which layers the in-
put should be sent through and in what order. Their architecture is matching what was
described in section 3.7. The full code with a readme for execution can be found here:
https://github.com/camilla1237/Master-thesis-code and the trained models are avail-
able on the Thinlinc server.
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Figure 19: The code for the simple model that was created during development.
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Figure 20: The code for the neural network inspired by the model by Basaia.
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